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Abstract-Laminar and turbulent heat transfer in the pipe flow for liquid metals are studied. Three flow 
regions, namely fully developed, developing thermal, and developing thermal and velocity regions, are 
considered. The modified van Driest and Cebeci mixing length turbulence model is adopted in the analysis. 
The thermal damping constant is redetermined in the study for the fully-developed region as well as other 
developing regions. The predicted results are compared with experimental data when available. Correlation 
for heat transfer calculation is given for boundary conditions of constant heat flux and constant wall 
temperature. The effect of the variation of physical properties is also studied. Correlation of heat transfer 
calculation when the property is variable is given in a simple form for liquid sodium and NaK eutectic. 

NOMENCLATURE Greek symbols 

cross-section area; 
momentum damping coefficient; 
thermal damping coefficient ; 
thermal damping coefficient for the fully- 
developed region ; 
empirical constants, equation (2); 
specific heat at constant pressure; 
diameter ; 
constants in equation (25) and (26); 
square of fluctuating temperature; 
axial length ; 
mixing length; 
Karman constant; 
thermal turbulent constant; 
turbulent kinetic energy, or thermal 
conductivity ; 
turbulent thermal conductivity; 
local Nusselt number h,D/k; 

fully-developed Nusselt number ; 
Peclet number, RePr; 
pressure ; 
Prandtl number ; 
turbulent Prandtl number; 
local wall heat flux ; 
Reynolds number uD/v; 

radius of tube ; 

Indices 

e& 

$1, 
I 

4. 

J? 
T, 

local wall shear stress; 
molecular viscosity; 
turbulent eddy viscosity ; 
turbulent dissipation function; 
density ; 
enthalpy boundary layer ; 
0.09 constant ; 
(x/D)/Pe local Graetz number. 

effective; 
turbulent or thermal; 
mean ; 
fully developed; 
local ; 
mean ; 
wall ; 
center line ; 
inlet ; 
constant wall heat flux; 
bulk ; 
film; 
constant wall temperature. 

1. INTRODUCTION 
radial coordinate; 
friction velocity, 4(7,/p); 
axial velocity component ; 
radial velocity component ; 
axial direction ; 
y=R-r; 

yu*/v dimensionless distance. 

LIQUID metal heat transfer has been a subject of 
interest for more than thirty years. This is because 
liquid metals, in general, possess large thermal con- 
ductivity, small kinematic viscosity, small vapor press- 
ure and an extensive temperature range over which 
they remain in the liquid phase. These characteristics 
make liquid metal especially valuable for certain 
important uses. The most familiar application is their 
use as coolants for the liquid metal fast breeder reactor. 
They are also the potential working fluids for si- 
. . . . . . . . . . . 
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Liquid metals, although they behave as Newtonian 
fluids, have very high thermal diffusivity and very low 
kinematic viscosity. Thus the Prandtl number is of low 
order, lo-‘. An important consequence of the low 
value of the Prandtl number is that in turbulent flows 
the molecular heat transport is important not only in 
the viscous sublayer region. but also in the buffer zone 
and even in some parts of turbulent regions. Physically 
this means that thermal diffusion from the wall 
boundary can penetrate much deeper into the turbu- 
lent region in liquid metals than would be possible in 
ordinary fluids. Consequently, thermal boundary con- 
ditions have a strong influence on heat-transfer char- 
acteristics in liquid metal flows. Most of the past 
solutions of turbulent heat transfer in a circular tube 
had concentrated on a flow which is fully developed, 
whose physical properties are constant, and whose 
wall boundary is either at isothermal or constant heat 
flux conditions. In this study, heat transfer in pipe flow 
is investigated not only for the fully-developed region, 
but also for the developing thermal region and the 
developing thermal and velocity region. In addition, 
the physical properties of the liquid metals are con- 
sidered to be variable, being a function of temperature, 
and the wall boundary is specified either by a tempera- 
ture or by a heat flux distribution. The numerical 
solutions are obtained from the modified 
Patankar-Spalding [l] computer code. The van 
Driest [2] mixing length hypothesis is adapted to 
model the turbulent shear stress, and the Cebeci model 
[3] is extended to model the turbulent thermal con- 
ductivity of liquid metal flows. 

2. TURBULENT MODEL AND HEAT-TRANSFER 
CORRELATION 

The mixing length model of turbulent momentum 
transfer for liquid metal is the same as for ordinary 
fluids and is relatively well developed for pipe flows. 
However, the modeling of turbulent energy transport 
for liquid metals is not well developed, partly because 
the experimental data are scarce and partly because 
an accurate experiment is difficult to perform. Jenkins 
[4], Deissler, [5], Azer and Chao [6] and Dwyer [7] 
modified the Prandtl mixing length model in which the 
turbulent eddy is considered to be a heat conducting 
sphere possessing a high thermal diffusivity. They all 
proposed a model of the turbulent Prandtl number 
which provides a functional link between turbulent 
momentum diffusivity and turbulent thermal diffu- 
sivity. Cebeci [3] recently adopted van Driest’s idea of 
near-wall damping of the mixing length to propose the 
turbulent Prandtl number as 

K[I -exp (--y’/A’)l 

Prz= K’[l -- exp(-y+ J(Pr)/B+)l (1) 

where K is the Karman constant and K’ is the constant 
for the thermal mixing length. A+ and B+ are the 
damping coefficients for momentum and thermal 
mixing length, respectively. y+ = yu*/v is the distance, 
y, from the wall normalized by the friction velocity u* 

= J(r,/p) and the kinematic viscosity v. Na and 
Habib [8] extended the Cebeci [3] model for liquids of 
lower Prandtl number by setting K = K’ and pro- 
posed the damping constant B+ as 

B+ = i C,(log,, Pr)‘-’ O.O2<Prl15 (2) 
i=l 

where C,s are empirical constants. The range of 
Prandtl numbers given in equation (2) is not sufficient 
to cover all liquid metals. Equation (2) was also found 
in this study to be inaccurate in the lower range of 
Prandtl numbers. We redetermine the damping coef- 
ficient B+ for liquid metals with the more accurate 
data of Nusselt number correlation obtained by Baker 
and Sesonske [9]. Subbotin et al. [lo] and Borishan- 
skii and Kutatedadze [l 11. 

In addition to the mixing length model, there are 
turbulence models to solve directly the turbulence 
stresses and turbulent heat fluxes by their respective 
turbulent transport equations. For example, Sha and 
Launder [ 121 proposed a turbulence model for liquid 
metal based on three differential scalar equations. The 
three scalar quantities are turbulent kinetic energy k; 
turbulent energy dissipation rate E; and turbulent 
temperature g. The other turbulent transport quan- 
tities are then obtained from the approximated alge- 
braic equations. In the k-s-g turbulence model, the near 
wall region also required special treatment because of 
its strong nonisotropic behavior and the influence of 
the laminar sublayer. Although the high-order turbu- 
lence model potentially has wider application, than 
mixing length model, use of such models for liquid 
metals requires further study. On the other hand, for 
simple geometries such as the circular tube, Stephen- 
son [13] showed that the mixing length model is as 
good as the k--E model for developing air flows. The 
difference is that the k--E turbulence model, unlike the 
mixing length model, predicts a peak axial velocity in 
the entrance region before the velocity profile reaches 
the fully-developed state. In this paper a modified 
mixing length model is adopted. 

From an engineering point of view, the gross heat 
transfer coefficient is of great interest. Therefore many 
empirical or semi-empirical formulae for evaluating 
the value of Nusselt numbers [14-181 have been 
proposed. In the fully-developed flow region, Martin- 
elli [14] and Lyon [15] analyzed turbulent heat 
transfer in a circular tube under a constant wall heat 
flux condition. Lyon gave a semi-empirical expression 
for the fully-developed pipe flow as 

Nu = 7 + 0.025 (Pr;’ Pe)‘.‘. (3) 

This is the well-known Martinelli-Lyon equation for 
liquid metals [15]. Lubarsky and Kaufman [16] re- 
evaluated the available past experimental data in the 
developed region and proposed that the Nusselt 
number should be 

Nu = 0.625 Pe0,4. (4) 

This formula gives values of Nusselt numbers 30% 
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FIG. 1. Regions and coordinates. 

below those of equation (3). Many later proposals, 
such as Dwyer [17] and Sleicher, Awad and Natter 
[18], suggested a Nusselt number formula with a value 
that falls in the region between equation (3) and (4). 
According to the experiments of Subbotin et al. [lo], 
Baker and Sesonske [9], and Borishanskii and Kuta- 
teladze [ll], the Nusselt number of turbulent liquid 
metal flow in the fully-developed region of circular 
tube should indeed be between equation (3) and (4). 
The suggested Nusselt number correlation for expe- 
rimental data will be given later. 

In the entrance region, the experimental data or 
predicted Nusselt numbers are rather limited. Awad 
[19] measured the NaK eutectic heat transfer coef- 
ficient at several locations along the axial direction of 
a circular pipe. Later, Sleicher, Awad and Natter [ 181 
proposed an approximate empirical formula for the 
developing thermal (DT) region as 

Nu,=Nu, for x/D>4 (5) 

where the fully-developed Nusselt number, Nu,, is 
given as 

Nu, = 4.8 +0.0156 Pea,” Promos 

for flow with uniform wall temperature; and 

Nu, = 6.3 +0.0167 Pea,” Pro.” 

for flow with uniform wall heat flux. In our experimen- 
tal set-up the turbulent pipe flow was divided into 
three regions as shown in Fig. 1: the fully-developed 
region where both velocity and temperature distri- 
bution are developed, a developing thermal region 
where the velocity profile is fully developed but the 
temperature profile is developing, and the developing 
thermal and velocity region where both velocity and 
temperature profiles are developing. New correlations 
for Nusselt numbers in these regions are given. The 

effect of property variation on the Nusselt number is 
also investigated. 

3. ANALYSIS 

In order to formulate the problem, the following 
assumptions are made: (a) the mean flow is steady, 
turbulent and axisymmetric, (b) body forces are negli- 
gible, (c) there is no phase change, (d) physical proper- 
ties are functions of mean temperature, (e) the Peclet 
number, Pe = PrRe, is larger than 50, such that the 
axial thermal diffusion is small compared with the 
radial thermal diffusion and can be neglected; (f) 
boundary layer approximation is applicable at the 
entrance region; and (2) the turbulent transport 
properties are modeled by the eddy viscosity p, and 
thermal conductivity k, model with van Driest and 
Cebeci modification of the mixing length approxi- 
mation. With these assumptions, the governing equa- 
tions in cylindrical coordinates (Fig. 1) can be written 
as 

where the pressure gradient dP/dx in equations (7) and 
(8) may be obtained from the total momentum balance 
in the axial direction of the pipe as 

dP - 2rrRr w ) u-2dpo, = 
dx A dx 

Here 7w is the local wall shear stress, A is the cross- 



1182 CHING-JEN CHEN and JENQ SHING CHIOU 

sectional area, U is the mean (or bulk) velocity, and i 
is the mean density. 

With the van Driest mixing length hypothesis [2] 
the eddy viscosity may be written as with y = R - r 

&ff = /I+/& = p+p12 a” 2 
I I 8~ ay 

where 

I = Ky[l-exp(-y+/A+)] 

1 = 3,R 
?,R 

ify>K. 

In equation (10) R is the radius of the pipe, 3. = 0.09, K 
= 0.435, A+ = 26, y+ = yu*/v, and u* = J(T,/~). 

On the other hand, turbulent conductivity k, is 
modeled by Cebeci’s model [3] or 

keff = k+k, = k+pll, $ g 
I I 

with I as given in equation (lo), and 

It = K’y[l -exp (-y+ J(Pr/B+)]. (11) 

Here Pr is the molecular Prandtl number, K’ is a 
constant, and B+ is the damping constant of the 
thermal mixing length. The turbulent Prandtl number 
Pr, = C&k, derived from equation (10) and (11) is 
then equal to equation (1). However, instead of 
equation (2) we propose the value of Bt to be 

B+ = B$ (12) 
T 3c, 

B+ = 10.5 Pr-1’3, the damping constant for the 
fullyffideveloped region, is determined from experimen- 
tal data [7-l 1,18,19]. aT is the enthalpy thickness and 
is defined as 

s R 

PU(+ - h) dy 
a7= O 

Pp a1 ($ - h,) 
(13) 

The subscripts w, r/i and $ indicate that the values are 
evaluated at the wall, the fully-developed region, and 
the center line of the pipe, respectively. 

The initial condition for fluid entering a circular 
tube is taken to be uniform temperature Ti and 
velocity distribution ui or 

~(0, r) = ui 

T(0, r) = Ti. 
(14) 

The symmetry condition at the center line requires that 

; (x, 0) = 0, U(X, 0) = 0 
(15) 

$x, 0) = 0. 

At the pipe wall, the no-slip and thermal conditions 
given 

u(x, R) = 0, 

T(x. R) = T,(x) 

u(x, R) = 0 
dT (16) 

or &x. R)=+. 

Here qw is the local heat flux per unit inner surface area. 
The property equations used in the calculation are 
taken from data given by Foust [20]. 

The governing equations (6))(8) are solved by a 
modified version of Patankar and Spalding computer 
code [l]. Basically it is the integral implicit finite- 
difference numerical scheme. ‘Integral’ means to in- 
tegrate the governing equations over a control element 
therefore the conservation of the dependent variables, 
such as energy, momentum and mass, is preserved. The 
main features of the Patankar-Spalding program [l], 
such as predicted-corrected pressure gradient, reduced 
von Mises coordinates, and Couette flow assumption 
near the wall are all adopted in this study, but with 
several changes. First, the thermal turbulence model 
given by equation (11) is used for the calculation of 
energy equation. Secondly, instead of the original near 
wall enthalpy function proposed by Patankar and 
Spalding [1] which is valid only for Pr > 0.5 the wall 
temperature function 

T+ = (T- T,)Pc,~ = Pry+ (17) 
4%’ 

is used for liquid metal flow in the near wall region. 
Equation (17) is derived from turbulent energy equa- 
tion (8) under the Couette flow assumption and 
neglecting the kinetic heating. Eddy thermal con- 
ductivity k, is neglected in the near wall region, since it 
is small near the wall compared with the extremely 
large molecular thermal conductivity. 

Indeed Kirillov’s measurements [21] indicate that 
molecular thermal diffusion overwhelms turbulent 
energy transport near the wall. Kirillov’s data [21] 
show that equation (17) is valid for 

Pry+ < 1. (18) 

That is, for liquid metal with Pr = 0.01 the upper 
bound of y+ is 100. This is more than sufficient for the 
present liquid metal calculation near the wall since the 
near wall regions are normally limited to y + less than 
50. The third change made is that a value of 0.435 is 
used for Karman constant (onstead of 0.415 used by 
Patankar nd Spaulding) so that the friction coefficient 
for the pipe flow in the fully developed region agrees 
best with the Prandtl universal law of friction. In this 
study, 20 to 30 cross-stream nodes were employed in 
most of the calculations. A forward marching step 
length of 0.05 or 0.1 diameter was used. To verify the 
numerical accuracy, several calculations were made 
with 40 and 60 cross-stream nodes with a step length of 
0.025 diameter. In either case the calculated heat 
transfer and wall friction coefficients are within 1% 
difference, therefore grid independent results are 
obtained. 
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FIG. 2. Laminar heat transfer in developing thermal region. 

4. DISCUSSION OF LAMINAR FLOWS 

The main purpose of the laminar-flow calculation 
was to test whether the modified program predicts 
some known solutions and to discuss any disparity. 
Figure 2 shows the local Nusselt number Nu, = h,D/k 
vs the inverse Graetz number [ = (x/D)/Pe] for air and 
NaK eutectic in the laminar developing thermal (DT) 
region with isothermal wall boundary condition, a 
problem known as the Graetz-Nusselt problem. Fi- 
gure 2 indicates that the predicted results for the local 
Nusselt number is a function of < only. This is 
consistent with the solution given by Nusselt and Kays 
[22]. Furthermore, the predicted Nusselt number for 
the fully-developed (FD) region also agrees with the 
analytical value of Nu,, T = 3.66 given by Kays [28]. 
Figure 3 shows the local Nusselt number, Nux, vs the 
Graetz number (l/c) for air and NaK eutectic in the 

laminar developing thermal and velocity (DTV) region 
with a constant wall heat flux. The present prediction, 
and those by Banston and McEligot [24], McMordie 
and Emery [25], and Nusselt and Kays [22], all 
approach the theoretical value of Nu,. 4 = 4.36 for the 
fully-developed flow at far downstream PrRe/(x/D) < 
5. The present results in the DTV region are consistent 
with the results of Banston and McEligot [24] for air 
(Pr = 0.75) and also with those of McMordie and 
Emergy [25] for NaK eutectic (Pr = 0.02). However, 
Kays’ calculation [23] for air is higher than both the 
present results and Banston and McEligot’s [24]. 

To explain this disparity let us first compare the 
results between the developing thermal (DT) region 
given in Fig. 2, and the developing thermal and 
velocity (DTV) region given in Fig. 3. The comparison 
illustrates an interesting point, that the local Nusselt 

50 - (CONSTANT HEAT FLUX) 

- PRESENT CALCULATION 

A CALCULATED BY MCMORDIE AND EMERY 

Re : 2000. Pr = .02 

--- CALCULATED BY KAYS 

0 CALCULATED BY BANSTON 

AND MCELIGOT 

AIR (Pr = 0.751 

FIG. 3. Laminar heat transfer in developing thermal and velocity region 
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FIG. 4. Turbulent heat transfer in fully-developed region. 

number in the DT region is a function of the inverse 
Graetz number only, while the local Nusselt number in 
the DTV region depends not only on the inverse 
Graetz number but also on the Prandtl number. This 
difference is due to the existence of a radial velocity 
component in the DTV region. This component 
disallows the normalization of the governing equation 
to absorb both Prandtl and Reynolds number into a 
single independent variable. As a consequence of 
omitting the radial velocity component in Kays’ [22] 
analysis, the local Nusselt number in the DTV region is 
a function of the Peclet number only. This explains the 
disparity between Kays’ results and the present or 
Branston and McEligot’s predictions. 

5. DISCUSSION OF TURBULENT FLOWS 

The results of the present analysis have been ob- 

tained for three turbulent flow regions, namely the 

fully developed (FD) region, the developing thermal 

70 

66 

I I I I I I I I I 

NaK 

A MEASURED AT x/d = 44 
BY SLEICHER 

_ -PRESENT 
CALCULATION 

0 0.2 0.4 0.6 0.6 1.0 

r/ R 

FIG. 5. Temperature profiles in fully-developed region. 

(DT) region, and the developing thermal and velocity 
(DTV) region. 

1. Fully-developed region (FD) 
The calculated Nusselt number vs Peclet number in 

the FD region is first correlated with the experimental 
data obtained by Baker and Sesonske [9], Subbotin et 
al. [lo], Borishanskii and Kutateladze [ll]. The 
thermal damping coefficient Bi is determined in the 
fully-developed region as 

B; = lo.sPr-“3. (19) 

Fig. 4 shows that a good correlation is obtained 
between the experimentally determined Nusselt num- 
ber and the present calculation. The analysis is based 
on the Cebeci model and the new damping coefficient 
given by equation (19). In the subsequent analysis 
equation (19) is used. 

Since it is difficult to make velocity measurement in 
flows of liquid metals, no experimental data is avail- 
able. Therefore the predicted velocity distribution in 
the FD region is first verified with Laufer’s experimen- 
tal data [22] for air under the assumption of constant 
properties. On the other hand, the temperature 
measurement of temperature profile in flows of liquid 
metals in easier and vast data are available. Figure 5 
shows the comparison of the calculated temperature 
profile for FD region (taken at x/D = 44) and the data 
obtained by Sleicher, Awad and Natter [18] for NaK. 
Figure 6 also compares the predicted T+ with data 
including sodium, Pb-Bi alloy, and mercury, compiled 
by Kirillov [21]. The correlation is good. 

2. Developing thermal region (DT) 
Before we present the calculations for the DT region 

it should be remarked that the damping constants A+ 
and B+ proposed by van Driest [2] and Cebeci [3] are 
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FIG. 6. Dimensionless temperature distribution in fully- 
developed region. 

flow-dependent quantities. A+ is known [26] to vary 
depending on whether the flow is under adverse or 
favorable pressure gradient and whether the flow is 
subjected to injection or suction. This suggests that the 
damping coefficient A+ is a function of the flow 
geometry and boundary condition. A+ is found to 
have a value of 26 for pipe flow. Similarly, the thermal 
damping constant B+ is a function of the flow 
geometry and boundary condition. In the present 
investigation it is found that the thermal damping 
constant B+ is a function of the Prandtl number as well 
as the flow region. Physically for liquid metals or fluids 
with small Prandtl numbers the thermal damping 
region becomes relatively large due to high molecular 
thermal diffusion. Thus the thermal damping region is 
likely affected by the local thermal boundary layer 
thickness. In other words, B+ should depend on the 
growth of boundary layer thickness or enthalpy thick- 

ness. We suggest the thermal damping constant for the 
developing regions to be 

B+ = B: 6, or 10.5 Pr-1’3&. (20) 
dTT OT?Z 

That is, the thermal damping coefficient is pro- 
portional to the enthalpy boundary layer ~3~. 

Figures 7 and 8 compare the predicted results forthe 
developing thermal (DT) region and experimental 
data measured by Awad [19] under boundary con- 
ditions of constant wall temperature and constant wall 
heat flux. General agreement is obtained in both cases. 
Figure 7 in addition shows the results if the thermal 
damping constant B+ does not take the local thermal 
boundary layer characteristic into account as given by 
equation (20). If instead equation (19) is used, the 
predicted results for the Nusselt number is smaller 
than in the experimental data of Awad. 

From Figure 8 we find that the ratio of the local 
Nusselt number to the fully-developed Nusselt num- 
ber, NuJNu,, is not sensitive to changes of the 
Reynolds and the Prandtl except for the cases when the 
Peclet numbers are less than 5 x 10’. Since the plots of 
NuJNu, vs xJD for various Reynolds numbers are 
similar, an approximate formula for NuJNu, can be 
derived as follows : 

Nu 2.4 1 
“=1+--_ 

Nu, (x/D) (x/DY 

x/D > 2 and Pe > 500 (21) 

Nu 7 2.8 
“=I+_ ~ 

Nn, (I@) + (LID) 

L/D > 2 Pe > 500 (22) 

(DEVELOPING THERMAL) 
(CONSTANT WALL TEMPERATURE) 

A MEASURED BY AWAD 

----PREDICTED BY SLEICHER 

--- PRESENT CALCULATION B+ = B.!_ 

- PRESENT CALCULATION B+ = 8; 8Tx/8T_ 

FIG. 7. Nusselt number in developing thermal region with constant wall temperature. 
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d (DEVELOPING THERMAL) 

(CONSTANT WALL HEAT FLUX) 
1.6 - 

Pr = 0.0093 Pr = 0.0296 

1.6 - 8 Re = 5 x lo5 - 

8 

z’ ---- . Re= 
_ 1.4- 

105 

; 

--- Re = 2.5~ lo4 
1.2 - 

1.0 - 

0.61 

0 10 20 30 40 

x/D 

FIG. 8. Nusselt number in developing thermal region with constant wall heat flux. 

1.2 

1.0 

0.6 

0: 2 0.6 

0.4 

Nu, = 5.6 + 0.0165 Pe”.85 Pro,o1 

for constant wall heat flux (23) 

Nu, = 4.5 + 0.0156 Pe”~as Pr”.O1 

for constant wall temperature. (24) 

Equation (21) is an improvement of Sleicher’s formula 
given in equation (5). Equation (22) gives the average 
Nusselt number. 

0.2 - PRESENT 
CALCULATION 3. Developing thermal and velocity region (DT V) 

Figure 9 compares the predicted velocity profiles at 
0.0 0.6 0.6 1.0 1.2 different axial locations with the data of Barbin and 

U/U Jones [27] for Re = 3.88 x 105. Agreement between 

FIG. 9. Turbulent velocity distribution in the developing 
the predicted profiles and measured data is obtained. It 

region. is found that the developing length for turbulent pipe 
flow is almost independent of the Reynolds number 

(DEVELOPING THERMAL AND VELOCITY) 

(CONSTANT WALL HEAT FLUX) 
1.6 - 

No (Pr=O.Ol) NaK (Pr=0.03) -- 

1.6 - 
a Re=4x105 - Re = 4~10~ 

8 

g 1.4 ---- - Re=4x104 

I 

z’ 

1.2 - 

1.0 - 

0.6 1 I I I 1 I I I I I I 
0 5 10 15 20 25 30 35 40 45 50 

x/D 

FIG. 10. Nusselt number in developing thermal and velocity region with constant wall heat flux. 
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and is about 35-50 diameters. The calculated NuJ 
Nu, in the DTV region for all constant wall heat flux 
is given in Fig. 10. Again, since these plots are similar 
for the range of Reynolds numbers calculated they may 
be correlated in an approximated form . 

NU 
2 = 0.88 + 

2.4 1.25 

Nu, 
----E 21x/D<35 
(x/D) (x/D) 

(25) 

and for the mean Nusselt number Nu,. 

Nt4 5 1.86 
?=I+- - 

Na, (W) + (W) 

Here for constant wall temperature it is found that 

,,7= (4o-x’D), F=())$) 

190 

and for constant wall heat flux 

E=F=O 

Nu, is given by equation (23) if the wall condition is 
constant heat flux and by equation (24) if the wall 
condition is isothermal. 

4. E&ct of variable properties 
As the physical properties vary from fluid to fluid at 

different temperature ranges, it is impossible to 
describe the variation of fluid flow or heat transfer 
characteristics due to temperature change by a single 
relationship and to expect that the relationship will be 
valid for all fluids under all conditions. Instead, one has 
to calculate each fluid under the prescribed conditions. 
For design convenience, simple formulae that approx- 
imate the variation of friction coefficients or heat 
transfer coefficients are still favorable. Therefore in the 
present investigation the Nusselt number and friction 
coefficients are presented in the forms of 

Nu Tb ’ 
PC - 

0 Nu, Ti 

where the subscript zero refers to the values calculated 
under the assumption of constant physical properties, 
Tb represents the bulk temperature, T, is the inlet 
temperature, while T, = 1/2(T, + T,) is the film 
temperature. Details of the correlation are given by 
Chiou [28] ; only results are summarized below. 
(A) For sodium liquid, m = -0.26, and 

(i) under constant wall heat flux 

n = exp [5.9 x 10m3 T, - 6.91 

lOOOK 2 Tb > 600K heating 

n=O 6OOK > T, 2 370K heating 

n = 0.25 cooling (29) 

(ii) under constant wall temperature 

n = 0.08 + 2.2 x 1O-4 T, 

lOOOK 2 T, > 600K heating 

n = 0.08 600K > T, 2 370K heating 

n = 0.16 cooling 

(30) 

(B) For NaK eutectic, m = -0.3, and 

(i) for constant wall heat flux 

n = -0.25 for heating 
(31) 

n = -0.15 for cooling 

(ii) for constant wall temperature 

n = -0.2 for heating and cooling.(32) 

6. CONCLUSION 

Liquid metal heat transfer in a circular pipe is 
investigated for both laminar and turbulent flows with 
constant wall temperature and constant wall heat flux 
as thermal boundary conditions. Three flow regions, 
namely the fully developed, developing thermal, and 
developing thermal and velocity regions, are con- 
sidered. The modified mixing length model proposed 
by van Driest and Cebeci is adopted as the turbulence 
model for turbulent stress and heat flux. The thermal 
damping coefficient is redetermined to provide better 
prediction for liquid metal heat transfer in the develop 
ing region. Predicted velocity and temperature profiles 
and variation of the Nusselt numbers in three flow 
regions are verified with experimental data when 
available. Convenient approximate equations are de- 
rived from the predicted results for variation of the 
local Nusselt number in the developing regions. Fur- 
thermore, corrections for property variation are also 
given for liquid sodium and NaK eutectic. 
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TRANSFERT THERMIQUE LAMINAIRE OU TURBULENT A L’ENTREE DUN 
TUBE POUR DES METAUX LIQUIDES 

R&n&-On etudie le transfert thermique laminaire ou turbulent pour des metaux liquides en ecoulement 
dans un tube. Trois regions sont consider&es: pleinement developpee, thermiquement developpee, 
thermiquement et dynamiquement en dtveloppement. Les modeles de turbulence a longueur de melange de 
Van Driest et de Cebeci sont adaptis pour cette analyse. La constante d’amortissement thermique est 
redetermined dans la region pleinement developpie aussi bien que pour les autres regions. Les rbultats du 
calcul sont compares avec les don&es experimentales disponibles. Des formules sont don&s pour des 
conditions aux limites de flux thermique constant et de temperature par&ale isotherme. On itudie aussi 
l’effet de la variation des proprietis physiques. Une formule simple dans le cas de la propritte variable est 

don&e pour le sodium liquide et pour I’eutectique NaK. 

WARMEUBERGANG BE1 LAMINARER UND TURBULENTER ROHRSTROMUNG IM 
ANLAUFGEBIET BE1 FLUSSIGEN METALLEN 

Zusammenfassung-Es wird der Warmelbergang von fliissigen Metallen bei laminarer und turbulenter 
Rohrstriimung untersucht. Es werden drei Stromungsbereiche betrachtet, voll ausgebildete Stromung, 
thermischer Anlaufsowie thermischer und hydraulischer Anlauf. Das moditizierte Turbulenzmodell von van 
Driest und Ceheci fur die Mischungswegliinge wird bei der Auswertung verwendet. Die thermische 
Diimpfungskonstante wird sowohl fur voll ausgebildete Stromung als such fur noch nicht ausgebildete 
Striimungsgebiete bestimmt. Die berechneten Ergebnisse werden mit Mel3werten verglichen, soweit diese 
verfiigbar sind. Gleichungen zur Wlrmetibergangsberechnung werden fur die Randbedingungen konstanter 
Warmestromdichte und konstanter Wandtemperatur angegeben. Der Einflu5 verhnderlicher physikalischer 
Eigenschaften wird such betrachtet. Eine Beziehung fiir den Wkmeiibergang bei variablen Stoffwerten kann 

in einfacher Form fur fliissiges Natrium und eutektisches NaK angegeben werden. 
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JIAMMHAPHbIti I-i TYPLGYJIEHTHbIti l-lEPEHOC TEIIJIA HA HAqAIIbHOM YYACTKE 
TPYEbI I-IPM TEYEHMM )KKIIAKAX METAJIJIOB 

AHHOTNUIS- tiCCJIenyeTCn JlaMHHapHbIii N Typ6yJIeHTHblk IlCptZHOC TCflJIa II&W T‘XCHHH B Tpy6e 

mrt4KHX MeTaJIJIOB. PaCCMaTpHBakOTCK TpH o6nacTa Te'ieHWR, a HMeHHO: flOJIHOCTb,O pa3LWTaK 

06JIaCTb, 06naCTb pa3BHTrtK TeIIJlOBOrO nOrpaHWiHOr0 CJIOR B 06nacTb pa3BtfTHn TenJlOBOrO A LlHHa- 

MHYeCKOrO nOrpaHA'IHOr0 CnOlI. npkl aHWIU3e &,CnOJIb3yeTC,l MO&G,UHpOBaHHaK MO,lWIb L"IE,HbI 

cMeuIeHm BaH ApHcTa ki qe6eqa. AaHo HoBoe onpeneneme K03$+wieHTa TennoBoro conporeene- 

HNR NI5, BCeX o6nacTeii. Pe3yJIbTaTbI paNeTa CpaBHHBaIOTCSI C klMeIO~‘tMUCII 3KCnepAMeHTa,,bHbIMH 

naHHbIMH. npHBeneHbI COOTHOLUeHHI &JIK paCqeTa TenJIOnepeHOCa KaK IIpH nOCTOIlHHOh4 TenJIOBOM 

noToKe,TaK w npH nocTormioB Termeparype cTeHKtf. MccnenyeTcn TaKme BnmHkie ki3kfetieHHs I$IH~H- 

YecKHx napardeTpoB. 0606weHHan 3aBmmdocTb nm pameTa TennonepeHoca npH nepeMeHHbIx napa- 

MeTpaXnaHa B npOCTOii +OpMCn,IK XGinKOrO HaTpWl ii 3BTeKTWKW NaK. 
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